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Torusartige Plasmakonfigurationen ohne Gesamtstrom durch ihren
Quersdnitt im Gleichgewicht mit einem Magnetfeld

Von F. Mever und H. U. ScamipT

Aus dem Max-Planck-Institut fiir Physik und Astrophysik, Miinchen
(Z. Naturforschg. 13 a, 1005—1015 [1958] ; eingegangen am 30. August 1958)

Es wird gezeigt, dal torusartige ! Plasmakonfigurationen ohne azimutalen Gesamtstrom im Gleich-
gewicht mit einem duBeren Magnetfeld moglich sind. Die Strombahnen diirfen ebene Kurven sein,
ihre Ebenen konnen sich aber nicht alle in einer Achse schneiden. Der Querschnitt des Plasmas hat
notwendig Maxima und Minima. Fiir einige Konfigurationen werden azimutale und meridionale
Querschnitte berechnet. Weiter wird gezeigt, dall man die Gleichgewichtsbedingungen fiir feldfreie
Plasmen zur Konstruktion eines verformbaren (Papier-) Modellgewebes benutzen kann, das eine echte
Analogie zur Gesamtheit der Gleichgewichtsflichen darstellt. Seine Verwendung wird am Beispiel
eines Torusmodells demonstriert.

Toruslike configurations of a plasma in equilibrium with an exterior magnetic field exist without
azimuthal current. The lines of current can be plane curves but their planes cannot intersect in the
same axis. The plasma cross-section must have maxima and minima. Azimuthal and meridional cross-
sections are calculated. — From the equilibrium conditions the construction rule for a deformable
(paper) model network is derived. This network is a true analogue to the totality of equilibrium sur-

faces of a plasma without an interior field. It is applied to a torus configuration.

In letzter Zeit wurden verschiedentlich magneto-
hydrodynamische Gleichgewichtsanordnungen zwi-
schen einem Plasma und einem Magnetfeld angege-
ben. Von besonderem Interesse sind torusartige An-
ordnungen. Die bisher bekannt gewordenen Losun-
gen machen dabei vom Pinch-Effekt eines azimutalen
Stromes Gebrauch. Es ist fraglich?, ob ein Gleich-
gewicht moglich ist, auch ohne dafl den Torus ein
Gesamtstrom in azimutaler Richtung durchfliet.
Dieses Problem wollen wir in dieser Arbeit behan-
deln *.

1. Grundgleichung

Dazu beschrinken wir uns der Einfachheit halber
auf solche Fille, in denen das Plasmainnere feldfrei
ist. Dann flieBt der Strom nur in der Oberflache des
Plasmas. Weiter besitzt das Magnetfeld an der Ober-
fliche nur eine tangentiale Komponente B*, wie aus

div B =0 folgt. Sie ist durch die 1. MaxwerLsche

1 Auf einem torusartigen Gebilde nennen wir solche ge-
schlossenen Linien meridional, die sich nur in seinem In-
nern auf einen Punkt zusammenziehen lassen. Die geschlos-
senen Linien, die sich im Innern nicht auf einen Punkt zu-
sammenziehen lassen, nennen wir azimutal. Dieselben Be-
zeichnungen verwenden wir auch fiir die von den Linien
umrandeten Querschnitte.

DaBl im Gleichgewicht notwendig eine .azimutale Strom-
komponente auftritt, wurde von Biermann, Hain, JorGENs
und Litst? fiir den Kreistorus, von Biermansy und Scairi-
ter* fiir alle rotationssymmetrischen Torusanordnungen

2

Gleichung mit der Oberflichenstromdichte j* ver-
kniipft,

nxB*= 7—47”1*. (1)
Dabei bezeichnet 1 die auBere Einheitsnormale auf

der Oberflache. Das Gleichgewicht zwischen duflerem
Magnetfeld und Gasdruck verlangt

81:t 58*2=p. (2)
Aus Gl. (1) und (2) folgt

ixp  CP 3

L= g s (3)

Der Gasdruck p ist wegen der Feldfreiheit des Plas-
mas an der gesamten Oberfliche konstant. Das glei-
che gilt also nach Gl. (3) fiir den Betrag der Ober-
flichenstromdichte. Zusammen mit der Divergenz-
freiheit des Oberflichenstromes folgt dann, dal be-
nachbarte Strombahnen stets gleichen Abstand von-
einander halten. Unter unserer Voraussetzung gilt

und von Kiepexnann 5 fiir spezielle nicht-rotationssymme-
trische Oberflichen bewiesen.

L. Biermany, K. Hawy, K. Jorcens u. R. Lisr,
forschg. 12 a, 826 [1957].

L. Biermany u. A. ScHLUTER,
[1957].

5 R. Kiepenuany, Z. Naturforschg. 13 a, 260 [1958].

Anm. b. d. Korr.: Vgl auch die inzwischen veroffent-
lichten Arbeiten der Gruppe Project Matterhorn, Princeton
University, in Phys. Fluids 1, 253 ff. [1958].
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also: Auf jeder Gleichgewichtsoberfliche bilden die
Strombahnen ein System von dquidistanten Linien 6.

Es gilt aber auch die Umkehrung: Gibt es auf
einer Oberfliche ein System dquidistanter Linien, so
stellt sie eine mogliche Gleichgewichtsoberfliche dar.
Nach KippenuanN ® kann man némlich ein die Gleich-
gewichtsaufgabe losendes Magnetfeld konstruieren,
dessen zugehorige Strombahnen mit dem gegebenen
Liniensystem zusammenfallen.

Diese geometrische Charakterisierung der Gleich-
gewichtsflichen erweist die Gleichgewichtsaufgabe
als eine Frage des Zusammenhanges im Grof3en. Ist
ndamlich die Ausgangskurve auf einer beliebigen
Fldche nicht selbst singuldar gewdhlt, 1at sich im
Kleinen stets das System der zu ihr dquidistanten
Linien konstruieren. Erst im Grofen taucht das Pro-
blem der singularititenfreien, speziell iiberschnei-
dungsfreien Uberdeckung dieser Fliche auf.

Daher geht man zur Gewinnung solcher Gleich-
gewichtsflichen zweckmiflig von den dquidistanten
Stromlinien aus und baut aus ihnen Oberfldchen
der gewiinschten Zusammenhangsverhiltnisse auf,
indem man die Singularitatenfreiheit durch Kon-
struktion garantiert.

Wir wollen dieses Verfahren auf das Problem
einer torusartigen Gleichgewichtskonfiguration ohne
azimutalen Gesamtstrom anwenden. Zunichst zeigen
wir, daf} hier die Stromlinien meridional in sich
geschlossen sein miissen.

Dazu verschieben wir irgendeine meridional ge-
schlossene Linie auf der Torusoberflache so, daf} sie
tiberall den Strombahn- und Feldlinienelementen
entlang verlduft. Von diesem ebenfalls meridional
geschlossenen Weg konnen wir voraussetzen, daf}
die Stiicke ldngs Magnetfeldlinien entweder alle in
Feldrichtung oder alle entgegengesetzt zu ihr durch-
laufen werden. Solange namlich zwei solche durch
ein Strombahnstiick verbundenen Feldlinienstiicke
in entgegengesetzter Richtung durchlaufen werden,
kann man durch Ubergang zu Nachbarstrombahnen
beide verkiirzen, bis eines von ihnen vollstindig
verschwindet.

Der durch diese geschlossene Linie hindurchtre-
tende Gesamtstrom ist

1*:4511*><d[|= 4;@58*(11. (4)

Nach Gl. (1) stehen die Richtungen von Strombah-
nen und Feldlinien aufeinander senkrecht. Daher
liefern zum Integral nur die Wegstiicke einen Bei-
trag, die lings Feldlinien laufen. Soll der Gesamt-
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strom unsere Forderung
I"=0 5)

erfiillen, miissen diese samtlich verschwinden. Das
heiflt, der Integrationsweg ist selbst eine Stromlinie,
die damit als geschlossene meridionale Kurve erwie-
sen wird.

2. Geometrische Bedingung

Mit den Ergebnissen des vorigen Abschnittes lautet
unser Problem jetzt: Gibt es torusartige Oberflachen
mit meridional geschlossenen und &dquidistanten
(Strom-) Linien?

Der besseren Ubersicht halber wollen wir an-
nehmen, daf} die Strombahnen dabei in Ebenen lie-
gen. Diese mogen sdmtlich einer Geraden, der z-
Achse, parallel sein.

Damit ist ein Polarkoordinatensystem R, ¢, z
ausgezeichnet (Abb. 1). In der Ebene z=0 wihlen

z
A

Abb. 1. Zur Einfiihrung der Koordinaten R, @, z, 1, .

wir eine Orthogonaltrajektorie R(g) der Strom-
ebenen aus und bezeichnen sie als Seele. Dabei nu-
merieren wir die Stromebenen mit den ¢-Werten
der in ihnen liegenden Seelenpunkte?. In jeder sol-
chen Ebene fithren wir jetzt ein Polarkoordinaten-
system r, ¥ ein, dessen Ursprung in der Seele liegt.
Die Richtung ¥ =0 zeige dabei in der Ebene z=0

nach auflen.

6 Dies ist ein Spezialfall der von KippexnanN ¥ untersuchten
Beziehung zwischen Strombahnen und Gleichgewichts-
flache.

7 Nur wenn R(p) konstant ist, fallen diese Ebenen mit den
Ebenen ¢ =const zusammen.
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Damit konnen wir die gesuchte Gleichgewichts-
fliche durch die Seele R(¢) und die Strombahnen
r (9, @) beschreiben. Die Form und Lage der Strom-
bahnen ist durch die Bedingung ihrer Aquidistanz
eingeschriankt. Den Abstand dl zweier benachbarter

z -

e
-
—

Abb. 2. Der Abstand zweier benachbarter Strombahnen.

Kurven zerlegen wir in eine Komponente dk parallel
zur Seele und eine Komponente db senkrecht dazu
(Abb. 2). Ist ds das zwischen den Nachbarebenen
liegende Stiick der Seele,

ds?= (R2+R?) d¢?, (6)
und o deren Kriimmungsradius mit
1_ R42RP-RR )

P = V’Rfl_;k/z:{ ’

so wird der Winkel zwischen beiden Ebenen dy = ds/o.
Wie man aus Abb. 2 ersieht, ist dann

dh= (1—1— icos‘ﬁ)ds. (8)
e

Die Komponente db ist der senkrechte Abstand zwi-

schen den in eine gemeinsame Ebene projizierten

Strombahnen. Mit dem Winkel /S zwischen der

Kurvennormalen und dem Radiusvektor,

tgﬂ:—m/r, (9)
wird (Abb. 3)
db=cosf-ry-dg. (10)
Aus (8) und (10) bekommt man
di? = dA2 + db? (11)

- {(R2 +R'?) (] + {-)- cos 0>2+ = (r::;z/—r;)—} de2.

Sollen die beiden Strombahnen dquidistant sein, so
darf dl offenbar nicht von ¥ abhingen. Wir setzen
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daher
dl/dp = VR +R? g(¢p)
und erhalten schlieflich
2 2 ’9 ° 2
el ) e - 14 ]
(13)

(12)

Wir hatten gesehen, dal man im Kleinen auf
jeder Flache ein System &dquidistanter Linien ein-
zeichnen kann. Dies entsprach der Freiheit in der
Vorgabe einer Funktion zweier Veranderlicher. Von
dieser Freiheit bleiben in der Differentialbedingung
(13) nur die beiden Funktionen R(®) und g(¢)

r (% P+dg)

db
I I3, @)

r
3

TN

Abb. 3. Projektion zweier benachbarter Strombahnen.

ibrig. Das ist im wesentlichen die Folge unserer
weiteren Bedingung, dafl die Strombahnen ebene
Kurven sein sollen.

3. Differentialgleichang

Wir fassen jetzt Gl. (13) als eine Differential-
gleichung fiir r (¢, ) auf und fragen, unter welchen
Bedingungen fiir R(¢) und g(¢) sie eine geschlos-
sene torusartige Oberflidche beschreibt.

Dazu fiihren wir den Winkel y zwischen Ober-
fliche und Seelenrichtung ein,

dh 1+ (r/o) cos &

dl g(®)

Fiir 1/0+0 ist y lings einer Strombahn um so gré-
Ber, je kleiner die rechte Seite von (14) ist, d. h.
je geringer der Abstand ¢-+r-cos? von der ge-
meinsamen ,,Drehachse“ der mit ¢ und @+de
numerierten Ebenen ist (vgl. Abb. 2). Daher ist die
Oberfliche am inneren Rand stiarker gewulstet als
weiter aullen. Der kleinste Winkel wird am &ufler-
sten Punkt des Querschnittes erreicht und wird dort
und nur dort zu Null, wenn

glp) =1+ (; cos 19)

(14)

cosy =

(15)

max ¢
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Daher hat der Winkel y auf der ganzen Strombahn
das gleiche Vorzeichen, die Torusoberflache ist ent-
weder von der Seele allseitig nach aullen oder all-
seitig nach innen geneigt.

Ein Ubergang zwischen beiden Verhaltensweisen
ist nur moglich, wenn an einer Stelle ¢ gleichzeitig

1/0=0 (16)

Die Seele ist dort geradlinig, die Torusoberfldche
zu ihr parallel (y =0); man hat dann einen infini-
tesimalen Zylinderausschnitt vor sich. Nach Gl.(13)
ist r, = 0 und kann sein Vorzeichen wechseln.

Bisher wurde noch kein Gebrauch von der Torus-
geometrie gemacht. Soll sich der Plasmaschlauch
ringférmig schlieflen, so sind im Mittel die Strom-
bahnebenen gegeneinander geneigt (1/0 £0), und
die damit notwendig auftretenden Querschnittsidnde-
rungen miissen beim Fortschreiten in ¢-Richtung
riuckgingig gemacht werden. Nach der Anzahl n der
dabei auftretenden Querschnittsmaxima lassen sich
die Torusanordnungen klassifizieren (n = 1). Die
Anzahl m der erforderlichen Nullstellen von 1/p ist
entsprechend der Zahl der Umkehrstellen (16) min-
destens doppelt so grof}. Daraus folgt:

Eine Toruskonfiguration mit ebenen, geschlosse-
nen Strombahnen, deren Ebenen samtlich durch eine
z-Achse gehen, ist nicht moglich 8.

Es gilte nimlich R(¢) =R, und 1/o0=1/Ry+0
tberall, d.h. die Umkehrbedingung (16) ist nir-
gends erfillt.

Wir wollen die Geschlossenheit unserer Torus-
anordnungen jetzt durch spezielle Forderungen an
die beiden Funktionen R(¢) und g(®) garantieren.

Der Torus bestehe dazu aus n gleichen Stiicken,
die stetig aneinandergefiigt seien. Jedes Stiick sei in
sich spiegelsymmetrisch. Dann ist die Anordnung
periodisch mit dem Winkel 2 7/n und symmetrisch
zu den Stellen

und g=1.

Pr=Preesy v=0,1,...,2n—1. (17)

Die n Minima liegen dabei an den Stellen mit gera-
dem Index @y und die n Maxima an den ungeraden
Stellen P21 41 (1=0,1,...; n—1).

Gibt I'(¢) die @-Abhingigkeit einer der Funk-
tionen R(¢), g(®) oder r (&, ¢), so gilt also

I'(p+ 27 =T'(9). T(p+9)=T(p—9).
(18)

8 Hierunter fallen auch die oben erwidhnten Unmaoglichkeits-
beweise.
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Aus Symmetriegriinden gehen die Stromebenen an

den Stellen ¢, durch die z-Achse, d. h.
R (¢») =0. (19)

Soll die Torusoberfliche dort knickfrei sein, so muf}
nach (16)

glp) =1 (20)
und wegen (19) und (7)
R(p)) =R"(¢y)  sein. (21)

Fir unsere Beispiele suchen wir noch eine ein-
fache Seele, die sich diesen Bedingungen fiigt und
eine leichte analytische Behandlung gestattet. Wir
wihlen die im cos lineare Funktion

_ cos2n @ _
R(p)=1- S n=1,2,.... (22)
Ihr Mittelwert ist auf 1 normiert.

Es mogen nun R(¢) und g(¢p) die Symmetrie-
eigenschaft (18) und die Bedingungen (19) bis (21)
erfiillen. Dann folgt aus (13), dal} auch die Losung
r(¥, ¢) diese Symmetrie (18) besitzt. Das gilt un-
abhingig von der Wahl des noch freien Anfangs-
querschnittes r (9, 0).

Als einzige Bedingungen dafiir, dal dann unsere
Integration eine sinnvolle Torusoberfliche ergibt,
bleiben die Forderungen, da} erstens ry2 nach GI.
(13) stets = 0 bleibt und daB zweitens die so be-

stimmte Oberfléche sich nicht selbst durchdringt.
4. Losung mit Charakteristiken
Wir werden jetzt die Diff.-Gl. (13) in der Form
(23)
=0

F(O,p,r,r9,19) =
re? — (1 + r'r'";f) (R*+R) [g2 - (1 + 2 cos 9 )2

genauer untersuchen. Die Integration dieser partiel-
len Differentialgleichung ist dquivalent mit der Lo-
sung des ihr zugeordneten Systems der charakteristi-
schen (gewdchnlichen) Differentialgleichungen ?

0 =Fy S SRy, :r =roFro+r9Fro,
u

du du
dro — _ (rsFr+Fs), Yo — _ (r, Fr+F,). (24)
du du

Aus diesen Gleichungen bestimmen sich die Charak-
teristiken als Funktionen des Parameters u ,

P (u), p(u), r(u); ro(u), ro(u) . (25)

¢ R. Courant u. D. HitBert, Methoden der math. Physik,
Bd. 2, Springer-Verlag, Berlin 1937, S. 65.
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Sie hangen noch von den vorgegebenen Anfangs-
werten ab. Die Gesamtheit der Charakteristiken, die
durch die vorgegebene Anfangsstrombahn fiihren,
spannen die gesuchte Losungsflache der Gl. (23) auf.

Dieses System der charakteristischen Gln. (24) 1a63t
sich durch Einfithrung neuer Koordinaten wesentlich
vereinfachen und seine Ordnung um zwei erniedri-
gen.

Wir setzen dazu

a=9+p8 (26)

mit dem in (9) eingefithrten Winkel . Dann erhalt
man nach einiger Zwischenrechnung das Differential-
gleichungssystem

x=rcos?, z=rsin?,

A _ o VR R 2 (14 V]
Fe =cosa V(R +R )[g (1+ 0)

da _o0 83 1/ (R r 2o (14 )
E_sma = V(R +R )[g (1+ Q)J

., (27a)

(27Db)
sowie die Quadraturaufgabe
e _ou VR R 2 (12 2
< == V(R +R?)|g (1+ 9) (27 ¢)
Die iibrigen Koordinaten bestimmen sich aus
rP=2?+22, tgd=z/z. (28)

Die drei Gln. (27) lassen sich auch unmittelbar
einsehen. Dazu bestimmen wir die Anderungen von
z und a, wenn man auf der Torusoberfliche lidngs
einer Magnetfeldlinie (d. h. also senkrecht zur Strom-
bahn) fortschreitet. Man ersieht aus Abb. 4 (welche
dieselbe Projektion wie Abb. 3 darstellt)

dz=sina-.db,

da=sin a- -2 (db) .
32

dr=cosa-db,

(29)

I R3ptdg,
|
az rAse)
’ : d1de)
N |
o
% r I_ I 2
||
b
3 |
x lax | | -5
dx

Abb. 4. Die charakteristischen Koordinaten z und a und ihre
Differentiale.

- ]/xa""+ (R®+R?) {(1 4 %)2— (1 +'i)2

dp
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Die letzte dieser Gleichungen entsteht durch Ver-
gleich zweier im Querschnitt benachbarter Abstinde
db. Die partielle Ableitung ist daher unter Fest-
haltung von ¢ auszufiithren. Aus (29) ergeben sich
direkt die Gln. (27), wenn man fiir db seinen Wert
nach Gln. (10), (9) und (13) einsetzt.

Damit ist aber weiter gezeigt, dal die Charakte-
ristiken unserer Gl. (13) identisch mit den Magnet-
feldlinien sind.

Besonders einfach wird die Losung unseres Diffe-
rentialgleichungssystems (27) fiir a=0. Dann ver-
schwinden die rechten Seiten von (27 b) und (27 c),
und man erhélt eine Magnetfeldlinie mit

a(p)=0, (30)

z(@) =const=1z,,

d. h. eine ebene Kurve in der Ebene z=2z,. Nun
kennzeichnet a =0 offenbar die duBersten Stellen
der Strombahnen (vgl. Abb. 4). Daher ist die Feld-
linie (30) die duBerste Linie auf der Oberflache,
und ihre Koordinate z =2, (¢) gibt den Maximal-
abstand der Torusanordnung von der z-Achse an.
Diesen kann man frei bestimmen, wenn man g(¢)
geeignet wahlt. Aus Gl. (27 a) mit a =0 erhalt man
dafiir

(31)

2 . 177 _dfxé’ 2 } _»I;l 4
£0) = zr () + 1+ )
Hierdurch iibertragen sich die Symmetrieforderun-
gen (18) von g(¢) auf z,(¢), die Stetigkeitsbedin-
gung (20) verlangt an den Stellen ¢ = ¢,

dz,/dep=0. (32)

Mit der Darstellung (31) fiir g(¢) garantiert man
die Positivitat des Wurzelausdruckes in den Gln. (13)
und (27) fiir alle kleineren Werte von (14 x/0)2,
die frither eine Einschridnkung fiir g(¢) bedeutete.

Auch die innersten Stellen der Torusfliche liegen
auf einer Magnetfeldlinie. In ihnen ist a =, Gln.

(27b) und (27c) ergeben

a(p)=a, (33)

z(p) =const = z; ,

und die am weitesten nach innen erstreckte Koordi-
nate z; (@) gehorcht nach (27 a) und (31)

0

< 14

(34)
Damit kann man bei vorgegebenem Verlauf der Seele
und des dufleren Abstandes die innerste Erstreckung
der Toruskoordinate ausrechnen. In der Azimutal-
ebene z=0 abgetragen ergeben z,(¢) und z;(¢)
einen Schattenrifl der Torusfliche. An diesem ist die
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Frage beantwortbar, ob die gerechnete Flache sich
selbst durchdringt und damit physikalisch sinnlos
wird. In diesem Fall mifte die Kurve z;(¢) Doppel-
punkte besitzen. Im allgemeinen kann man das ver-
meiden, indem man den Anfangswert von | z; | genii-
gend klein wahlt.

Fir alle iibrigen Feldlinien auf der Torusfliche
hat man das volle Dgl.system (27 a), (27b) zu l6-
sen. Thre Projektionen verlaufen im Schattenrif} zwi-
schen den beiden Grenzlinien z, (p) und z;(¢). Auch
ihre Koordinaten z(¢) sind beschrinkt, da die rech-
ten Seiten von (27c) periodisch um Null schwan-
ken. Also bleibt die aus den Feldlinien gebildete
Torusoberfldche selbst endlich und geschlossen.

Unser Verfahren zur Konstruktion torusartiger
Gleichgewichtsflachen ist noch an die Bedingung der
Uberschneidungsfreiheit gebunden. Eine dafiir giin-
stigste Wahl von z, (¢) ist

2, ()= 0. (35)

Bei dieser Vorgabe wird namlich die gefdhrliche
Ausbauchung der innersten Linie zum Minimum
[vgl. Formel (34)]. Die 2-Werte aller anderen Feld-
linien sind dann negativ. Fiir die innerste Linie folgt
aus (34)

i‘('@' _ V(R2+R’2) 'g’ (2_ 'O‘) (36)
Gilt speziell die Naherung
|7 | <o, (37)
so besitzt diese Dgl. die Losung
) 2 — 3
al= (Vimh+ [ ). )

Im allgemeinen Fall liefert eine numerische Inte-
gration von (36) die gewiinschte Kurve. Wir haben
sie mit den Funktionen (22) fiir eine Reihe von
n-Werten ausgefithrt. Abb. 5 a bis e zeigt die Schat-
tenrisse fiir Torusanordnungen vom Typ n=1, 2, 3,
4 und 8. Wie man erkennt, werden die Maxima im
Verhiltnis zu den Minima um so grofer, je weiter
ihr gegenseitiger Winkelabstand

Adp=2a/n (39)

ist. Das begrenzt gleichzeitig die Grofle der Minima,
wenn sich der Torus in den Maxima nicht durch-
dringen soll. Speziell fiir den Fall eines einzigen
Maximums (n=1) gibt es keine durchdringungs-

10 Dagegen kann man mit einer anderen Wahl von R () sol-
che Anordnungen sehr wohl angeben.
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freie Losung, der Durchmesser z; wird vor Erreichen
des halben Umlaufes zu Null (Abb. 5 a) 10,

Fir groBe Werte n der Periodizitit und gleich-
zeitige Giltigkeit von (37) erhdlt man aus (22),
(7) und (38) die Naherung

|5i(9) = (V[z]+ 1222, (40)

Die relativen Radiusschwankungen sind dafiir

(41)

|zilmax—|zilmin _ 4 ( 3
| i |min nlz| \n

sie nehmen mit der Zahl der Maxima ab. Dagegen
bleibt die Oberflichenwelligkeit, gemessen am Win-
kel zwischen Seelenrichtung und innerster Linie, von
der Groflenordnung
dlai]

dp =2V|x|sinnep.

(42)
Die in diesem Abschnitt gerechneten Beispiele be-
weisen die Behauptung: Es gibt torusartige Gleich-
gewichtsanordnungen mit meridional geschlossenen
Strombahnen.
Der gezeigte Schattenrif} ist gleichzeitig azimutaler
Querschnitt der Anordnung, wenn nur innerste und

Abb. 5a.
Abb. 5 a—e. Azimutale Querschnitte fiir n=1, 2, 3, 4 und 8.



TORUSARTIGE PLASMAKONFIGURATIONEN 1011

- /Xilmax ~0964%

_/Xilmin=009

Abb. 5c.

Abb. 5d.

dullerste Linien der Oberfliche in derselben Ebene
liegen. Das ist bei zu einer solchen Ebene symmetri-
schen Anordnungen der Fall. Die meridionalen
Schnitte durch den Torus hidngen noch von der noch
freien Vorgabe einer Anfangsstrombahn ab. Wir
wollen fiir sie noch eine Folge besonders einfacher
Beispiele durchrechnen.

5. Ahnlichkeitslésung

Dazu beschrianken wir uns auf den Fall (37) und
setzen fiir die Losung von (13) an

(D, @) =f(@)-£(P). (43)

Abb. 5e.
Die Separation verlangt in der linearisierten Gl. (13)

g(p) =1+2c1@ (44)

mit einer Konstanten ¢. Dann zerfallt (13) in die
gewohnlichen Gleichungen

YV 2mrrn L, (45)
do e

LA VA
do = Vc—tcosﬂ A (46)

Die Gl. (45) ist in der Naherung (37) mit (36)



1012
identisch und besitzt die Losung (38) :
¢ e 2
(i R+R? , \
flp) = (Vf0+ /] BT, ‘d‘P)'
Der Anteil f(¢) der Losung variiert also wie die

innerste Linie einer Anordnung mit z, =0, d. h.

g=1 [vgl. (35) und (31)].

(38 a)

2 b/
r
g /\
v
v b
.
7
v,
/; 79N

TEHHRRRITRRRY

-+
SN SERCNNRCSSRSNSSSSN,
1}

i

Abb. 6 a—d. Das Richtungsfeld der Separationsgleichung fiir
meridionale Querschnitte; ¢ >0, c¢=0, —1/1<c<0,
c=—1/s.

Fiir den Anteil z(¢) betrachten wir das Richtungs-
feld von (46), Abb. 6 a. Wir benutzen dabei die
kartesischen Koordinaten

E=t.cos, (47)

Die gekennzeichneten Integrallinien gehoren zum po-
sitiven Wurzelvorzeichen. Die anderen mit d¢/d¥ <0
entstehen daraus durch Spiegelung ¥ — —¥. Ein-
gezeichnet ist ferner der Kreis

(E+3)*+7n’=c+ 1. (48)
Auf ihm ist d¢/d%=0. Die Stellen mit umgekehrt

n=t-sin .

F.MEYER UND H. U.SCHMIDT

d¥/dt =0 liegen auf der Geraden

f=c.

(49)

Innerhalb des Kreises und rechts dieser Grenzgera-
den existieren keine reellen Losungen. Zwei explizite
Losungen sind die beiden Kreistangenten

E=fi=—}+Ve+l,E=&=—}—Ve+ 1 (50)
Ihre Berithrungspunkte mit dem Kreis
Pi(§=&,%1=0) und P(§=&,,9=0) (51)

sind die singuldren Punkte des Richtungsfeldes. In
sie miinden Integrallinien ein, welche die Losungs-
geraden parabolisch tangieren, und zwar in P; aus
dem Gebiet >0 und in P, aus dem Gebiet <0
kommend.

Die interessierende Integrallinie geht vom Punkt
P, mit senkrechter Tangente aus und miindet nach
halbkreisartigem Verlauf in der Halbebene #%>0
ebenso in P, . Sie und sie allein ist durch die Spie-
gelung 7 — —#, d.h. durch die Hinzunahme des
negativen Wurzelvorzeichens, zu einer geschlossenen,
knickfreien Kontur zu ergénzen. Damit ist fiir jeden
Wert ¢ >0 eindeutig eine geschlossene Losung von
(46) bestimmt. Interessant ist noch der Grenzfall
c¢=0, Abb. 6b. Die Grenzgerade fallt hier mit der
Lésungsgeraden durch P, zusammen. Sie besteht aus
singuldren Punkten, in die die Integrallinien miin-
den. Auch die ausgezeichnete Integrallinie hat ein
Stiick mit ihr gemeinsam. Fiir die Fille ¢ <0 exi-
stiert keine geschlossene Kurve mehr, wie die Rich-
tungsfelder —1/4<c<0 und c= —1/4 zeigen
(Abb. 6¢,d). In diesen Féllen liegt der Ursprung
auflerhalb des Grenzkreises: Es gibt keine Separa-
tionslosung (43), bei der die Seele aulerhalb des
Querschnittes verlduft.

In Abb. 7 zeigen wir schliefllich das Ergebnis der
numerischen Integration der Kontur fiir eine Reihe
von c-Werten. Jede von ihnen liefert mit (43) einen
Strombahnquerschnitt, der sich entlang des Torus
dhnlich bleibt. Aufgetragen wurde dabei die nor-
mierte Kurve

2
") = e
Fir c— oo nahert sie den Kreis an, der die auf ©
umgerechnete Gl. (46) asymptotisch 16st. Damit al-
lerdings fiir grofe ¢ die Bedingung (37)

lzi|~ft—>2Ve - f<o (53)

erfiillt bleibt, hat man fiir entsprechend kleine Werte
von f(¢) zu sorgen. Das bedeutet z. B in der Lo-

t(9) . (52)
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Abb. 7. Meridionale Querschnitte.

sung (40)
)= (Vios 1=emn0 ]

auch eine hohe Periodizitdt n. Es gibt also hier den
Fall eines Torus mit genahert kreisformigem Quer-
schnitt, aber grofler Oberflichenwelligkeit.

(40 a)

6. Ein Analogiemodell fiir Gleichgewichtsflachen

Wir hatten gesehen, daf} es auf jeder Gleich-
gewichtsfliche ein Netz aus &quidistanten Strom-
bahnen und den dazu senkrechten Feldlinien gibt.
Wir konnen dieses Netz als Koordinatensystem be-
nutzen. Es stelle also in der Parameterdarstellung

der Flache der Ortsvektor
1(u,v)

mit u=const die Strombahnen, mit v =const die
Feldlinien dar. Die Bedingung der Orthogonalitit
lautet

Ly Ly= 0 ’ (54‘)
die Aquidistanz verlangt
Ly Tu= E(u) %

Man kann auf den Feldlinien speziell die Bogenlidnge
als Parameter u wéhlen und erhalt dann

gu'zu=1- (55)

Diese Bedingungen (54) und (55) bestimmen allein
noch keine Losung I(u,v) des Gleichgewichtspro-
blemes. Wir hatten oben zusitzlich gefordert, dal
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die Strombahnen eben sein sollen,

Tp-n(u) =0, (56)

mit einem nur u-abhingigen Einheitsvektor 1. Die
Charakteristiken des so vervollstandigten Differen-
tialgleichungssystemes (54), (55), (56) fiir die drei
Komponenten von I sind genau die Feldlinien und
die Strombahnen. Das geht aus der charakteristi-
schen Form von (55) und (56) hervor, in der je-
weils nur die Ableitungen in einer Richtung vor-
kommen 1.

An die Stelle von (56) konnen irgendwelche an-
deren Bedingungen treten, z. B. eine Funktion

F(L zu’ Zr,uﬂ}) =0.

Insbesondere kann eine bestimmte Flache

F(1) =0 (57)

vorgeschrieben werden, auf der die Losung dann das
System der Strombahnen und Feldlinien angibt. We-
gen der Bedingung (55) gilt als Verallgemeinerung
unserer fritheren Feststellung: In allen die Gleich-
gewichtsfliche beschreibenden Dgl.systemen sind die
Magnetfeldlinien Charakteristiken. Storungen in der
Anfangsverteilung bereiten sich also langs der Feld-
linien aus.

Dies steht im Zusammenhang mit einer differen-
tialgeometrischen Eigenschaft der Feldlinien auf der
Lésungsflache. Um das einzusehen, benutzen wir das
Linienelement in unserer Parameterdarstellung. Aus

(54) und (55) erhalt mit

Ly Ly=G6(u,v) (58)
die erste Fundamentalform
ds? =du?+ G (u, v) dv2. (59)

Aus dieser Form folgt: Die Magnetfeldlinien v = const
sind geodatische Linien. Sie sind ndmlich Lésungen
der fiir die geodatischen Linien giiltigen Dgl., die in
unseren Koordinaten lautet

Gy

— ¥ =0.
G

ua—@a+a2é%z+m2 (60)

Man kann auch direkt aus (55) und (56) ableiten,
daf} lings der Feldlinien ihr Kriimmungsvektor

1/9 N=Ty
stets in Richtung der Flachennormalen I, X I, steht
(n=Hauptnormale).

11 In Gl. (13) kommen die Strombahnen als Charakteristiken
nicht mehr vor, da die Gl. (56) dort schon integriert ist:
n=g().
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Als geodaitische Linien sind die Feldlinien kiirzeste
Verbindungen zwischen zwei Punkten. Diese Eigen-
schaft kann man als Folge der MaxweLLschen Span-
nungen verstehen, die einen Zug lidngs der Feldlinien
ausiiben.

Die Strombahnen v = const sind als Orthogonal-
linien des geodatischen Feldliniensystems von selbst
geoditisch parallel, d. h. dquidistant. Unsere Gleich-
gewichtsaufgabe kann man daher so formulieren:

Welche geschlossenen Flichen lassen sich singulari-
titenfrei durch ein System geoddtischer Linien iiber-
decken?

Dies ist eine Frage des Zusammenhanges im Gro-
Ben, die analytisch nur in einfachen Féllen iber-
schaubar ist. Als ein Beispiel dafiir legt die Unter-
suchung des Kreistorus durch Kippexsanx® die Ro-
tationstorusflichen nahe (vgl. auch Jorcexs 12). Fiir
diese gilt der Satz!? der Differentialgeometrie:

Lings jeder geodidtischen Linie ist das Produkt
R-sina aus dem Radius des Parallelkreises und dem

Sinus des Winkels, den die Geoditische mit dem Me-
ridian einschlieBt, konstant.

Jedes Feldliniensystem

(61)

R'sina=R0'Sina0

ergibt also eine Gleichgewichtsanordnung auf der
Rotationsfliche, und der grofite Winkel, den iiber-
haupt eine Feldlinie am dufleren Rand mit dem Me-
ridian bilden kann, ist durch das Verhaltnis

sina; = Ry/R,; < 1 (62)

des kleinsten zum groften Radius bestimmt. Entspre-
chend hat der Strom aufen stets eine azimutale Kom-
ponente, und es gibt keine Gleichgewichtsanordnung
eines Rotationstorus ohne azimutalen Gesamtstrom.

Zur allgemeinen Behandlung der Uberdeckungs-
frage untersuchen wir den Zusammenhang zwischen
zwei verschiedenen Gleichgewichtsflachen. Durch die
gleichen Parameterwerte v sind die Feldlinien der
einen denen der anderen zugeordnet, das gleiche ge-
schieht durch u fiir die Strombahnen. Sehen wir von
den Verformungen ab, welche die Maflbeziehungen
(59) nicht dndern, so ist der einzige Unterschied
zwischen beiden Flachen der, daf3 die Feldlinien an
den entsprechenden Stellen verschiedenen Abstand
VG habent. Durch Verindern dieses Feldlinien-
abstandes kann man also die eine Flache aus der

12 K. Jorcens, Z. Naturforschg. 13 a, 493 [1958].
13 7. B. W. Haax, Differential-Geometrie, Teil I, Wolfenbiit-
teler Verlagsanstalt, Wolfenbiittel u. Hannover 1949, S. 105.
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anderen erhalten. Insbesondere kann man so alle

Gleichgewichtsflachen aus der Ebene

ds? = du? + do? (63)

bekommen. Diesen Zusammenhang kann man zur
Herstellung einer Modellfliche benutzen. Dazu hat
man nur ein System geodatischer Streifen derartig
zu verbinden, dal} ihr gegenseitiger Abstand variabel
ist. Ein solches Modell 1aft sich aus Papier einfach
herstellen.

Die Magnetfeldlinien sind als geodatische Linien
mit ihrer Tangentenfliche in die Ebene abwickelbar.
Daher kann man zu ihrer Darstellung ein System
von Papierstreifen nehmen. Die Strombahnen sollen
dieses System senkrecht durchschneiden, miissen aber
variierbare Lange besitzen. Man kann sie durch eine
Folge von Papierstegen darstellen, wenn man diese
Stege zwischen den Feldlinienstreifen ziehharmonika-
artig faltet. Dann bekommt man ein Papiergitter der
in Abb. 8 gezeigten Gestalt. In ihm stellen die durch-

Abb. 8. Modellgewebe.

laufenden Streifen die magnetischen Feldlinien dar.
Die Strombahnen sind die Projektionen der gefalte-
ten Stege in die von den Streifen gebildete mittlere
Flache.

Um mit einem solchen Modellpapier geschlossene
Gleichgewichtsflichen nachzubilden, hat man es so
zusammenzufiigen, daf} Strombahnen und Feldlinien
keine freien Enden mehr aufweisen. Ist das gelun-
gen, so hat man das Uberdeckungsproblem im Gro-
Ben gelost und eine mogliche Gleichgewichtskonfigu-
ration nachgeahmt.

Wir wollen noch die Herstellung von Torusmodel-
len beschreiben. Um den in dieser Arbeit behandel-
ten Fall einer Anordnung ohne azimutalen Gesamt-
strom zu erhalten, geht man von einem rechteckigen
Papiergitter aus und klebt es zunichst zylindrisch

14 1/G dv ist der Abstand zwischen den Feldlinien » und
v+dv.
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so zusammen, daf} die Strombahnen geschlossen sind.
Durch ringformiges Zusammenbiegen des Zylinders
und Aneinanderfiigen der freien Enden der Feld-
linien entsteht daraus die gewiinschte Konfiguration.
Einen so hergestellten Papiertorus !> von ca. 50 cm
Durchmesser zeigt die Abb. 9. Bei diesem Torus lau-
fen die Feldlinien ebenfalls in sich zuriick. Wir haben

Abb. 9. Raumliches Torusmodell fiir n=8.

ihm die Gestalt n =8 mit 8 Maxima des Querschnit-
tes gegeben. Er ist praktisch das rdumliche Modell
zu dem frither gerechneten Querschnitt fir n=38
(Abb. 5¢). Man sieht gut die Wulstung der inneren
Feldlinien, die sich daraus ergibt, daf} die dufleren
und inneren Feldlinien gleich lang sind.
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Torusanordnungen, wie den frither 3 untersuchten
Kreistorus mit rein azimutalem Strom, erhalt man,
wenn man in umgekehrter Reihenfolge zuerst die
Feldlinien in sich schliefit und dann diesen Zylinder
ringformig zum Torus biegt. Entsprechend ergeben
sich Anordnungen der in fritheren Arbeiten ® 12
und in unserem Beispiel der Rotationsflache behan-
delten Art, wenn man zunachst die Strombahnen ver-
setzt aneinanderfiigt. Der aus einem solchen Zylinder
zusammengebogene Torus wird dann von den Strom-
linien spiralartig umlaufen.

Durch die tiberraschende Verformbarkeit solcher
Papierflachen erhélt man einen Eindruck von der
Mannigfaltigkeit moglicher Gleichgewichtsflachen.

Zum Abschluf sei eine Bemerkung iiber das Ma-
gnetfeld im Auflenraum angefiigt. Die auf der Gleich-
gewichtsflache vorgegebenen Magnetfelder lassen sich
im allgemeinen nur bis zu einem gewissen endlichen
Abstand von der Flache singularitdtenfrei fortsetzen.
Innerhalb dieses Abstandes miissen bei einer wirk-
lichen Anordnung die das Feld erzeugenden Spulen
angebracht werden. Jorcexs 1 hat die Grofle dieses
Abstandes bei den axialsymmetrischen Anordnungen
untersucht und ihn fir elliptische Querschnitte expli-
zit angegeben. Falls keine besonderen Symmetrien
vorliegen, darf man erwarten, dal} dieser Abstand
von der Groflenordnung der Kriimmungsradien un-
serer Gleichgewichtsoberflache ist.

15 Wir mochten besonders Herrn W, Stopiexk fiir die Mithilfe
bei seiner Herstellung danken.



