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Es wird gezeigt, daß torusartige 1 Plasmakonfigurationen ohne azimutalen Gesamtstrom im Gleich-
gewicht mit einem äußeren Magnetfeld möglich sind. Die Strombahnen dürfen ebene Kurven sein, 
ihre Ebenen können sich aber nicht alle in einer Achse schneiden. Der Querschnitt des Plasmas hat 
notwendig Maxima und Minima. Für einige Konfigurationen werden azimutale und meridionale 
Querschnitte berechnet. Weiter wird gezeigt, daß man die Gleichgewichtsbedingungen für feldfreie 
Plasmen zur Konstruktion eines verformbaren (Papier-) Modellgewebes benutzen kann, das eine echte 
Analogie zur Gesamtheit der Gleichgewichtsflächen darstellt. Seine Verwendung wird am Beispiel 
eines Torusmodells demonstriert. 

Toruslike configurations of a plasma in equilibrium with an exterior magnetic field exist without 
azimuthal current. The lines of current can be plane curves but their planes cannot intersect in the 
same axis. The plasma cross-section must have maxima and minima. Azimuthal and meridional cross-
sections are calculated. — From the equilibrium conditions the construction rule for a deformable 
(paper) model network is derived. This network is a true analogue to the totality of equilibrium sur-
faces of a plasma without an interior field. It is applied to a torus configuration. 
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also: Auf jeder Gleichgewichtsoberfläche bilden die 
Strombahnen ein System von äquidistanten Linien 6 . 

Es gilt aber auch die Umkehrung: Gibt es auf 
einer Oberfläche ein System äquidistanter Linien, so 
stellt sie eine mögliche Gleichgewichtsoberfläche dar. 
Nach K i p p e n h a h n 5 kann man nämlich ein die Gleich-
gewichtsaufgabe lösendes Magnetfeld konstruieren, 
dessen zugehörige Strombahnen mit dem gegebenen 
Liniensystem zusammenfallen. 

Diese geometrische Charakterisierung der Gleich-
gewichtsflächen erweist die Gleichgewichtsaufgabe 
als eine Frage des Zusammenhanges im Großen. Ist 
nämlich die Ausgangskurve auf einer beliebigen 
Fläche nicht selbst singulär gewählt, läßt sich im 
Kleinen stets das System der zu ihr äquidistanten 
Linien konstruieren. Erst im Großen taucht das Pro-
blem der singularitätenfreien, speziell überschnei-
dungsfreien Überdeckung dieser Fläche auf. 

Daher geht man zur Gewinnung solcher Gleich-
gewichtsflächen zweckmäßig von den äquidistanten 
Stromlinien aus und baut aus ihnen Oberflächen 
der gewünschten Zusammenhangsverhältnisse auf, 
indem man die Singularitätenfreiheit durch Kon-
struktion garantiert. 

Wir wollen dieses Verfahren auf das Problem 
einer torusartigen Gleichgewichtskonfiguration ohne 
azimutalen Gesamtstrom anwenden. Zunächst zeigen 
wir, daß hier die Stromlinien meridional in sich 
geschlossen sein müssen. 

Dazu verschieben wir irgendeine meridional ge-
schlossene Linie auf der Torusoberfläche so, daß sie 
überall den Strombahn- und Feldlinienelementen 
entlang verläuft. Von diesem ebenfalls meridional 
geschlossenen Weg können wir voraussetzen, daß 
die Stücke längs Magnetfeldlinien entweder alle in 
Feldrichtung oder alle entgegengesetzt zu ihr durch-
laufen werden. Solange nämlich zwei solche durch 
ein Strombahnstück verbundenen Feldlinienstücke 
in entgegengesetzter Richtung durchlaufen werden, 
kann man durch Übergang zu Nachbarstrombahnen 
beide verkürzen, bis eines von ihnen vollständig 
verschwindet. 

Der durch diese geschlossene Linie hindurchtre-
tende Gesamtstrom ist 

/ *= ( j )| i*xd f 1= (J)23*dl. (4) 

Nach Gl. (1 ) stehen die Richtungen von Strombah-
nen und Feldlinien aufeinander senkrecht. Daher 
liefern zum Integral nur die Wegstücke einen Bei-
trag, die längs Feldlinien laufen. Soll der Gesamt-

strom unsere Forderung 

/ * = 0 (5 ) 

erfüllen, müssen diese sämtlich verschwinden. Das 
heißt, der Integrationsweg ist selbst eine Stromlinie, 
die damit als geschlossene meridionale Kurve erwie-
sen wird. 

2. Geometrische Bedingung 

Mit den Ergebnissen des vorigen Abschnittes lautet 
unser Problem jetzt: Gibt es torusartige Oberflächen 
mit meridional geschlossenen und äquidistanten 
(Strom-) Linien? 

Der besseren Übersicht halber wollen wir an-
nehmen, daß die Strombahnen dabei in Ebenen lie-
gen. Diese mögen sämtlich einer Geraden, der z-
Achse, parallel sein. 

Damit ist ein Polarkoordinatensystem R, cp, z 
ausgezeichnet (Abb . 1 ) . In der Ebene z = 0 wählen 

wir eine Orthogonaltrajektorie R(<p) der Strom-
ebenen aus und bezeichnen sie als Seele. Dabei nu-
merieren wir die Stromebenen mit den cp-Werten 
der in ihnen liegenden Seelenpunkte 7 . In jeder sol-
chen Ebene führen wir jetzt ein Polarkoordinaten-
system r, $ ein, dessen Ursprung in der Seele liegt. 
Die Richtung # = 0 zeige dabei in der Ebene 2 = 0 
nach außen. 

6 Dies ist ein Spezialfall der von KIPPENHAHN 5 untersuchten 
Beziehung zwischen Strombahnen und Gleichgewichts-
fläche. 

7 Nur wenn R(qp) konstant ist, fallen diese Ebenen mit den 
Ebenen <p = const zusammen. 



Damit können wir die gesuchte Gleichgewichts-
fläche durch die Seele R{cp) und die Strombahnen 
r ( # , cp) beschreiben. Die Form und Lage der Strom-
bahnen ist durch die Bedingung ihrer Aquidistanz 
eingeschränkt. Den Abstand dZ zweier benachbarter 

Abb. 2. Der Abstand zweier benachbarter Strombahnen. 

Kurven zerlegen wir in eine Komponente dh parallel 
zur Seele und eine Komponente dö senkrecht dazu 
(Abb. 2 ) . Ist ds das zwischen den Nachbarebenen 
liegende Stüde der Seele, 

ds2=(R2 + R'2) dcp2, (6) 

dh = 1 + 

( 7 ) 

(R2 + R'2) I + —- cos -f- A 
l + ( r / / r 2 ) J 

( 9 ) 

(10) 

(11) 

dcp2. 

Sollen die beiden Strombahnen äquidistant sein, so 
darf dl offenbar nicht von # abhängen. Wir setzen 

daher 

dl/dcp = VR2 + Y2 g{cp) 

und erhalten schließlich 

r / = f 1 + r4)( R2 + R'2) g2(cp) - ( 1 + COS 
Q 

und o deren Krümmungsradius mit 
1 _ R2 + 2 R'2-R R" 

q ~ ]/R2 + R'23 ' 

so wird der Winkel zwischen beiden Ebenen d% = dS/Q. 
Wie man aus Abb. 2 ersieht, ist dann 

r c o s $ ) d s . (8) 
6 / 

Die Komponente db ist der senkrechte Abstand zwi-
schen den in eine gemeinsame Ebene projizierten 
Strombahnen. Mit dem Winkel ß zwischen der 
Kurvennormalen und dem Radiusvektor, 

tgß= — r&jr, 

wird (Abb. 3) 

d& = cos ß • rv • dcp . 

Aus (8) und (10) bekommt man 

dl2 = dh2 + d&2 

r 

Q 

(12) 

( 1 3 ) 

Wir hatten gesehen, daß man im Kleinen auf 
jeder Fläche ein System äquidistanter Linien ein-
zeichnen kann. Dies entsprach der Freiheit in der 
Vorgabe einer Funktion zweier Veränderlicher. Von 
dieser Freiheit bleiben in der Differentialbedingung 
(13) nur die beiden Funktionen R{cp) und g(cp) 

r f^<P+d<p) 

rM <p) 
dbi 

/ r \ ( \ 
e 

Abb. 3. Projektion zweier benachbarter Strombahnen. 

übrij Das ist im wesentlichen die Folge unserer 
weiteren Bedingung, daß die Strombahnen ebene 
Kurven sein sollen. 

3. Differentialgleichung 

Wir fassen jetzt Gl. (13) als eine Differential-
gleichung für r("&,cp) auf und fragen, unter welchen 
Bedingungen für R(<p) und g(cp) sie eine geschlos-
sene torusartige Oberfläche beschreibt. 

Dazu führen wir den Winkel y zwischen Ober-
fläche und Seelenrichtung ein, 

dh 1 -f (r/o) cos # , , . N cos = • . (14) 
/ dl g(<p) K J 

Für l / o = £ 0 ist y längs einer Strombahn um so grö-
ßer, je kleiner die rechte Seite von (14) ist, d. h. 
je geringer der Abstand Q + r-cosfi von der ge-
meinsamen „Drehachse" der mit cp und cp + dcp 
numerierten Ebenen ist (vgl. Abb. 2 ) . Daher ist die 
Oberfläche am inneren Rand stärker gewulstet als 
weiter außen. Der kleinste Winkel wird am äußer-
sten Punkt des Querschnittes erreicht und wird dort 
und nur dort zu Null, wenn 

g(<p) = 1 + ( cos 
Q /max 



Daher hat der Winkel y auf der ganzen Strombahn 
das gleiche Vorzeichen, die Torusoberfläche ist ent-
weder von der Seele allseitig nach außen oder all-
seitig nach innen geneigt. 

Ein Übergang zwischen beiden Verhaltensweisen 
ist nur möglich, wenn an einer Stelle cp gleichzeitig 

I / o = 0 und g= 1 . ( 1 6 ) 

Die Seele ist dort geradlinig, die Torusoberfläche 
zu ihr parallel (7 = 0 ) ; man hat dann einen infini-
tesimalen Zylinderausschnitt vor sich. Nach Gl. ( 1 3 ) 
ist r<p = 0 und kann sein Vorzeichen wechseln. 

Bisher wurde noch kein Gebrauch von der Torus-
geometrie gemacht. Soll sich der Plasmaschlauch 
r ingförmig schließen, so sind im Mittel die Strom-
bahnebenen gegeneinander geneigt ( 1 / Q ^ 0 ) , und 
die damit notwendig auftretenden Querschnittsände-
rungen müssen beim Fortschreiten in ^-Richtung 
rückgängig gemacht werden. Nach der Anzahl n der 
dabei auftretenden Querschnittsmaxima lassen sich 
die Torusanordnungen klassifizieren ( n > l ) . Die 
Anzahl m der erforderlichen Nullstellen von i / o ist 
entsprechend der Zahl der Umkehrstellen ( 1 6 ) min-
destens doppelt so groß. Daraus fo lgt : 

Eine Toruskonfiguration mit ebenen, geschlosse-
nen Strombahnen, deren Ebenen sämtlich durch eine 
z-Achse gehen, ist nicht möglich 8. 

Es gälte nämlich R{cp)=R0 und 1/q = l / / ? 0 =h 0 
überall, d. h. die Umkehrbedingung ( 1 6 ) ist nir-
gends erfüllt. 

W i r wollen die Geschlossenheit unserer Torus-
anordnungen jetzt durch spezielle Forderungen an 
die beiden Funktionen R(cp) und g(<p) garantieren. 

Der Torus bestehe dazu aus n gleichen Stücken, 
die stetig aneinandergefügt seien. Jedes Stück sei in 
sich spiegelsymmetrisch. Dann ist die Anordnung 
periodisch mit dem Winkel 2 n / n und symmetrisch 
zu den Stellen 

71 
Iv — V' — 

n 
v = 0, 1 , . . . , 2 n - l . (17) 

r w = r(<p), r (cp,. + cp) = r(cpy - cp). 

(18) 

Aus Symmetriegründen gehen die Stromebenen an 
den Stellen cpv durch die z-Achse, d. h. 

R'{cpv)= 0 . ( 19 ) 

Soll die Torusoberfläche dort knickfrei sein, so muß 
nach ( 1 6 ) 

(20) 

und wegen (19 ) und (7 ) 

R(cpv) =R"(cpv) sein. (21 ) 

Für unsere Beispiele suchen wir noch eine ein-
fache Seele, die sich diesen Bedingungen fügt und 
eine leichte analytische Behandlung gestattet. Wir 
wählen die im cos lineare Funktion 

* ( ? ) = ! - » = 1 , 2 , . . . . ( 2 2 ) 
l + 4 n

2 

Ihr Mittelwert ist auf 1 normiert. 
Es mögen nun R(cp) und g{cp) die Symmetrie-

eigenschaft (18 ) und die Bedingungen (19 ) bis ( 21 ) 
erfüllen. Dann folgt aus ( 1 3 ) , daß auch die Lösung 
r ( # , cp) diese Symmetrie (18 ) besitzt. Das gilt un-
abhängig von der Wahl des noch freien Anfangs-
querschnittes r ( # , 0 ) . 

Als einzige Bedingungen dafür, daß dann unsere 
Integration eine sinnvolle Torusoberfläche ergibt, 
bleiben die Forderungen, daß erstens r v 2 nach Gl. 
( 1 3 ) stets > 0 bleibt und daß zweitens die so be-
stimmte Oberfläche sich nicht selbst durchdringt. 

4. Lösung mit Charakteristiken 

Wir werden jetzt die Diff.-Gl. ( 13 ) in der Form 

F ( # , 9 9 , r , r d , r ^ ) = (23 ) 

(l+ ^ (R2 + R'z g- 1 + cos ß 
e 

= 0 

Die n Minima liegen dabei an den Stellen mit gera-
dem Index cp2i und die n Maxima an den ungeraden 
Stellen cp2lJri (l = 0, 1, . . . , n — 1 ) . 

Gibt r (cp) die cp-Abhängigkeit einer der Funk-
tionen R{cp), g((p) oder r(ft,cp), so gilt also 

2 71' 

genauer untersuchen. Die Integration dieser partiel-
len Differentialgleichung ist äquivalent mit der Lö-
sung des ihr zugeordneten Systems der charakteristi-
schen (gewöhnlichen) Differentialgleichungen9 

d& r dcp r dr 
au dw dzi 

dr, 
du au 

— rv Fry + r& Fr9 , 

= - (rvFr + Fv). ( 24 ) 

Aus diesen Gleichungen bestimmen sich die Charak-
teristiken als Funktionen des Parameters u , 

i){u), cp(u), r(u) ; r&(u), rv{u) . ( 2 5 ) 

8 Hierunter fallen auch die oben erwähnten Unmöglichkeits- 9 R. COURANT u. D. HILBERT, Methoden der math. Physik, 
beweise. Bd. 2. Springer-Verlag, Berlin 1937, S. 65. 



Sie hängen noch von den vorgegebenen Anfangs-
werten ab. Die Gesamtheit der Charakteristiken, die 
durch die vorgegebene Anfangsstrombahn führen, 
spannen die gesuchte Lösungsfläche der Gl. (23 ) auf. 

Dieses System der charakteristischen Gin. (24) läßt 
sich durch Einführung neuer Koordinaten wesentlich 
vereinfachen und seine Ordnung um zwei erniedri-
gen. 

Wir setzen dazu 

x = r c o s # , z = r s i n # , a = ft + ß ( 26 ) 

mit dem in (9) eingeführten Winkel ß . Dann erhält 
man nach einiger Zwischenrechnung das Differential-
gleichungssystem 

dx 
d cp 

do^ 
dcp 

— = cos a |/(R2 

= sin a 

+ R2) 

y(R2+R'2) 

1 + (27 a) 

* - [ ! + f f 

(27 b) 

sowie die Quadraturaufgabe 

dz 
da 

= sin a | / V + R'2) r - 1 + 

Die übrigen Koordinaten bestimmen sich aus 

r2 = x2 + z2, tg fi = z/x. 

(27 c) 

(28) 

Die drei Gin. (27) lassen sich auch unmittelbar 
einsehen. Dazu bestimmen wir die Änderungen von 
x und a, wenn man auf der Torusoberfläche längs 
einer Magnetfeldlinie (d. h. also senkrecht zur Strom-
bahn) fortschreitet. Man ersieht aus Abb . 4 (welche 
dieselbe Projektion wie Abb. 3 darstellt) 

drr = c o s a - d & , dz = s i n a - d 6 , 

det = sin ct. -iL (d&) . (29 ) 

Die letzte dieser Gleichungen entsteht durch Ver-
gleich zweier im Querschnitt benachbarter Abstände 
d&. Die partielle Ableitung ist daher unter Fest-
haltung von cp auszuführen. Aus (29 ) ergeben sich 
direkt die Gin. ( 2 7 ) , wenn man für d6 seinen Wert 
nach Gin. ( 1 0 ) , (9 ) und (13 ) einsetzt. 

Damit ist aber weiter gezeigt, daß die Charakte-
ristiken unserer Gl. ( 13 ) identisch mit den Magnet-
feldlinien sind. 

Besonders einfach wird die Lösung unseres Diffe-
rentialgleichungssystems (27 ) für a = 0. Dann ver-
schwinden die rechten Seiten von (27 b) und (27 c ) , 
und man erhält eine Magnetfeldlinie mit 

a(9?) = 0 , z(<p) = const = za , (30) 

d. h. eine ebene Kurve in der Ebene z = z a . Nun 
kennzeichnet a = 0 offenbar die äußersten Stellen 
der Strombahnen (vgl. Abb . 4 ) . Daher ist die Feld-
linie ( 30 ) die äußerste Linie auf der Oberfläche, 
und ihre Koordinate x = xSL(cp) gibt den Maximal-
abstand der Torusanordnung von der z-Achse an. 
Diesen kann man frei bestimmen, wenn man g(cp) 
geeignet wählt. Aus Gl. (27 a) mit a = 0 erhält man 
dafür 

g2(cp) = 
R2 + R'2 

dxa 
dcp j + ( i + Za (31) 

Hierdurch übertragen sich die Symmetrieforderun-
gen (18 ) von g(cp) auf ^ ( 9 9 ) , die Stetigkeitsbedin-
gung (20 ) verlangt an den Stellen cp = cpv 

dxj dcp = 0. ( 32 ) 

Mit der Darstellung (31 ) für g(cp) garantiert man 
die Positivität des Wurzelausdruckes in den Gin. (13) 
und (27 ) für alle kleineren Werte von ( l + x / o ) 2 , 
die früher eine Einschränkung für g(cp) bedeutete. 

Auch die innersten Stellen der Torusfläche liegen 
auf einer Magnetfeldlinie. In ihnen ist a — 7i, Gin. 
(27 b) und (27 c) ergeben 

OL (cp) = 71 , z(cp) = const = 2; , (33) 

und die am weitesten nach innen erstredete Koordi-
nate x\(cp) gehorcht nach (27 a) und (31) 

2+(R2 + R'2) 1 + - 1 + 

(34) 

Abb. 4. Die charakteristischen Koordinaten x und a und ihre 
Differentiale. 

Damit kann man bei vorgegebenem Verlauf der Seele 
und des äußeren Abstandes die innerste Erstreckung 
der Toruskoordinate ausrechnen. In der Azimutal-
ebene 2 = 0 abgetragen ergeben x^(cp) und x\(cp) 
einen Schattenriß der Torusfläche. An diesem ist die 



Frage beantwortbar, ob die gerechnete Fläche sich 
selbst durchdringt und damit physikalisch sinnlos 
wird. In diesem Fall müßte die Kurve xx(cp) Doppel -
punkte besitzen. Im allgemeinen kann man das ver-
meiden, indem man den Anfangswert von | X\ | genü-
gend klein wählt. 

Für alle übrigen Feldlinien auf der Torusfläche 
hat man das volle Dgl.system (27 a ) , (27 b ) zu lö-
sen. Ihre Projektionen verlaufen im Schattenriß zwi-
schen den beiden Grenzlinien ara(<j9) und x\(cp). Auch 
ihre Koordinaten z(cp) sind beschränkt, da die rech-
ten Seiten von (27 c ) periodisch um Null schwan-
ken. Also bleibt die aus den Feldlinien gebildete 
Torusoberfläche selbst endlich und geschlossen. 

Unser Verfahren zur Konstruktion torusartiger 
Gleichgewichtsflächen ist noch an die Bedingung der 
Überschneidungsfreiheit gebunden. Eine dafür gün-
stigste Wahl von x^cp) ist 

xa(<p) = 0. ( 3 5 ) 

Bei dieser Vorgabe wird nämlich die gefährliche 
Ausbauchung der innersten Linie zum Minimum 
[vgl. Formel ( 34 ) ] . Die rr-Werte aller anderen Feld-
linien sind dann negativ. Für die innerste Linie fo lgt 
aus ( 34 ) 

JÜÜLL = ]/(IP + R'2) M ( 2 - M ) . (36) 
dcp \ Q \ o ) 

Gilt speziell die Näherung 
\ x i \ < Q , ( 3 7 ) 

so besitzt diese Dgl . die Lösung 
v 

h l = ( ^ i 7 o + / l / ^ ' 2 d , f ( 3 8 ) 

Im allgemeinen Fall liefert eine numerische Inte-
gration von (36 ) die gewünschte Kurve. W i r haben 
sie mit den Funktionen (22 ) für eine Reihe von 
ra-Werten ausgeführt. A b b . 5 a bis e zeigt die Schat-
tenrisse für Torusanordnungen v o m T y p n = 1, 2 , 3, 
4 und 8. Wie man erkennt, werden die Maxima im 
Verhältnis zu den Minima um so größer , je weiter 
ihr gegenseitiger Winkelabstand 

Acp = 2 njn ( 3 9 ) 

ist. Das begrenzt gleichzeitig die Größe der Minima, 
wenn sich der Torus in den Maxima nicht durch-
dringen soll. Speziell für den Fall eines einzigen 
Maximums ( n = l ) gibt es keine durchdringungs-

freie Lösung, der Durchmesser xx wird vor Erreichen 
des halben Umlaufes zu Null (Abb . 5 a) 10 . 

Für große Werte n der Periodizität und gleich-
zeitige Gültigkeit von ( 3 7 ) erhält man aus ( 2 2 ) , 
( 7 ) und ( 3 8 ) die Näherung 

\«{<p)\-(ywi+ ( 4 0 ) 

Die relativen Radiusschwankungen sind dafür 

k U a x - h U = 4 / 1 + y j ) 5 ( 4 1 ) 

|zi|min n \ x0 \ \ n ) 

sie nehmen mit der Zahl der Maxima ab. Dagegen 
bleibt die Oberflächenwelligkeit, gemessen am Win-
kel zwischen Seelenrichtung und innerster Linie, von 
der Größenordnung 

± l x A = 2 Y\ Xi I sin n cp . ( 42 ) 
d cp 

Die in diesem Abschnitt gerechneten Beispiele be-
weisen die Behauptung: Es gibt torusartige Gleich-
gewichtsanordnungen mit meridional geschlossenen 
Strombahnen. 

Der gezeigte Schattenriß ist gleichzeitig azimutaler 
Querschnitt der Anordnung, wenn nur innerste und 

10 Dagegen kann man mit einer anderen Wahl von R{cp) sol-
che Anordnungen sehr wohl angeben. 

Abb. 5 a. 
Abb. 5 a —e. Azimutale Querschnitte für n=1, 2, 3, 4 und 8. 



Abb. 5 b. 

äußerste Linien der Oberfläche in derselben Ebene 
liegen. Das ist bei zu einer solchen Ebene symmetri-
schen Anordnungen der Fall. Die meridionalen 
Schnitte durch den Torus hängen noch von der noch 
freien Vorgabe einer Anfangsstrombahn ab. Wir 
wollen für sie noch eine Folge besonders einfacher 
Beispiele durchrechnen. 

5. Ähnlichkeitslösung 

Dazu beschränken wir uns auf den Fall (37 ) und 
setzen für die Lösung von (13) an 

r(&,<p)=f(<p)'t(&). ( 4 3 ) 

Die Separation verlangt in der linearisierten Gl. (13) 

g 2 M = l + 2 c M (44 ) 

mit einer Konstanten c . Dann zerfällt (13 ) in die 
gewöhnlichen Gleichungen 

,d- = 1/2(R2 + R'2) f , (45) dcp \ Q 

dk IAT-T^-T-1" (46) d?/ f c — t cos tf 

Die Gl. (45) ist in der Näherung (37) mit (36) 



identisch und besitzt die Lösung ( 3 8 ) : d # / d t = 0 liegen auf der Geraden 

f(<P)=[V]o + 

<p 

IV R2+R'2 

2 0 
d cp ( 38 a) 

Der Anteil j(cp) der Lösung variiert also wie die 
innerste Linie einer Anordnung mit x& = 0 , d. h. 
g = 1 [vgl. ( 3 5 ) und ( 3 1 ) ] . 

c >o C'O 

>1 - 4 — f -

Abb. 6 a —d. Das Richtungsfeld der Separationsgleichung für 
meridionale Querschnitte; c > 0 , c = 0 , — V 4 < c < 0 , 

C = - V 4 . 

Für den Anteil betrachten wir das Richtungs-
feld von ( 4 6 ) , A b b . 6 a. W i r benutzen dabei die 
kartesischen Koordinaten 

£ = t- c o s # , i] = t- s i n # . (47 ) 

Die gekennzeichneten Integrallinien gehören zum po-
sitiven Wurzelvorzeichen. Die anderen mit d f / d ? 9 < 0 
entstehen daraus durch Spiegelung — Ein-
gezeichnet ist ferner der Kreis 

(Z + h ) 2 + V2 = c + (48 ) 

Auf ihm ist d f / d # = 0 . Die Stellen mit umgekehrt 

Innerhalb des Kreises und rechts dieser Grenzgera-
den existieren keine reellen Lösungen. Zwei explizite 
Lösungen sind die beiden Kreistangenten 

£ = h = ~ \ + 1 / c + £ , £ = l 2 = - £ - Vc + l ( 50 ) 

Ihre Berührungspunkte mit dem Kreis 

P 1 ( £ = | 1 , r / = 0 ) und P 2 ( | = | 2 , > / = 0) ( 51 ) 

sind die singulären Punkte des Richtungsfeldes. In 
sie münden Integrallinien ein, welche die Lösungs-
geraden parabolisch tangieren, und zwar in P j aus 
dem Gebiet ? / > 0 und in P 2 aus dem Gebiet r ] < 0 
kommend. 

Die interessierende Integrallinie geht vom Punkt 
P 2 mit senkrechter Tangente aus und mündet nach 
halbkreisartigem Verlauf in der Halbebene f ? > 0 
ebenso in P j . Sie und sie allein ist durch die Spie-
gelung rj —»— tj, d . h . durch die Hinzunahme des 
negativen Wurzelvorzeichens, zu einer geschlossenen, 
knickfreien Kontur zu ergänzen. Damit ist für jeden 
Wert c > 0 eindeutig eine geschlossene Lösung von 
( 4 6 ) bestimmt. Interessant ist noch der Grenzfall 
c = 0 , A b b . 6 b. Die Grenzgerade fällt hier mit der 
Lösungsgeraden durch P j zusammen. Sie besteht aus 
singulären Punkten, in die die Integrallinien mün-
den. Auch die ausgezeichnete Integrallinie hat ein 
Stüde mit ihr gemeinsam. Für die Fälle c < 0 exi-
stiert keine geschlossene Kurve mehr, wie die Rich-
tungsfelder — l / 4 < c < 0 und c = — 1 / 4 zeigen 
( A b b . 6 c, d ) . In diesen Fällen liegt der Ursprung 
außerhalb des Grenzkreises: Es gibt keine Separa-
tionslösung ( 4 3 ) , bei der die Seele außerhalb des 
Querschnittes verläuft. 

In A b b . 7 zeigen wir schließlich das Ergebnis der 
numerischen Integration der Kontur für eine Reihe 
von c-Werten. Jede von ihnen liefert mit ( 43 ) einen 
Strombahnquerschnitt, der sich entlang des Torus 
ähnlich bleibt. Aufgetragen wurde dabei die nor-
mierte Kurve 

t ( 0 ) = m . ( 52 ) 
1 + 1/4 c + 1 

Für c—> oo nähert sie den Kreis an, der die auf r 
umgerechnete Gl. ( 4 6 ) asymptotisch löst. Damit al-
lerdings für große c die Bedingung (37 ) 

ft-+2Vc-f<Q ( 53 ) 

erfüllt bleibt, hat man für entsprechend kleine Werte 
von f{<p) zu sorgen. Das bedeutet z. B in der Lö-



sung (40 ) 

(40 a) 

auch eine hohe Periodizität n . Es gibt also hier den 
Fall eines Torus mit genähert kreisförmigem Quer-
schnitt, aber großer Oberflächenwelligkeit. 

6. Ein Analogiemodell fiir Gleichgewichtsflächen 

Wir hatten gesehen, daß es auf jeder Gleich-
gewichtsfläche ein Netz aus äquidistanten Strom-
bahnen und den dazu senkrechten Feldlinien gibt. 
Wir können dieses Netz als Koordinatensystem be-
nutzen. Es stelle also in der Parameterdarstellung 
der Fläche der Ortsvektor 

l(u,v) 

mit u = const die Strombahnen, mit v = const die 
Feldlinien dar. Die Bedingung der Orthogonalität 
lautet 

lu'lv = o , ( 5 4 ) 

die Äquidistanz verlangt 

lu-lu = E(u) . 

Man kann auf den Feldlinien speziell die Bogenlänge 
als Parameter u wählen und erhält dann 

l u - l u = 1 . (55) 

Diese Bedingungen (54 ) und (55 ) bestimmen allein 
noch keine Lösung v) des Gleichgewichtspro-
blemes. Wir hatten oben zusätzlich gefordert, daß 

die Strombahnen eben sein sollen, 

y „ . n ( u ) = 0 , (56 ) 

mit einem nur «-abhängigen Einheitsvektor 11 . Die 
Charakteristiken des so vervollständigten Differen-
tialgleichungssystemes ( 5 4 ) , ( 5 5 ) , ( 56 ) für die drei 
Komponenten von J sind genau die Feldlinien und 
die Strombahnen. Das geht aus der charakteristi-
schen Form von (55 ) und (56 ) hervor, in der je-
weils nur die Ableitungen in einer Richtung vor-
kommen u . 

An die Stelle von (56) können irgendwelche an-
deren Bedingungen treten, z. B. eine Funktion 

F(r, lu,lv,u,v) = 0. 

Insbesondere kann eine bestimmte Fläche 

F ( J ) = 0 (57 ) 

vorgeschrieben werden, auf der die Lösung dann das 
System der Strombahnen und Feldlinien angibt. We-
gen der Bedingung (55) gilt als Verallgemeinerung 
unserer früheren Feststellung: In allen die Gleich-
gewichts fläche beschreibenden Dgl.systemen sind die 
Magnetfeldlinien Charakteristiken. Störungen in der 
Anfangsverteilung bereiten sich also längs der Feld-
linien aus. 

Dies steht im Zusammenhang mit einer differen-
tialgeometrischen Eigenschaft der Feldlinien auf der 
Lösungsfläche. Um das einzusehen, benutzen wir das 
Linienelement in unserer Parameterdarstellung. Aus 
(54) und (55) erhält mit 

lv-lv = G{u,v) ( 58 ) 

die erste Fundamentalform 

ds2 = d u 2 + G (« ,* ; ) dz;2. ( 59 ) 

Aus dieser Form folgt : Die Magnetfeldlinien v = const 
sind geodätische Linien. Sie sind nämlich Lösungen 
der für die geodätischen Linien gültigen Dgl., die in 
unseren Koordinaten lautet 

üv - vü+ u2v + u-v2 Gv_ _ -vz = 0 . (60) 
G G  v ' 

Man kann auch direkt aus (55) und (56) ableiten, 
daß längs der Feldlinien ihr Krümmungsvektor 

I / o • n = i u u 

stets in Richtung der Flächennormalen JM X L steht 
(n = Hauptnormale). 

11 In Gl. (13) kommen die Strombahnen als Charakteristiken 
nicht mehr vor, da die Gl. (56) dort schon integriert ist: 
J-n=£(u) . 



Als geodätische Linien sind die Feldlinien kürzeste 
Verbindungen zwischen zwei Punkten. Diese Eigen-
schaft kann man als Folge der MAxwELLschen Span-
nungen verstehen, die einen Zug längs der Feldlinien 
ausüben. 

Die Strombahnen v = const sind als Orthogonal-
linien des geodätischen Feldliniensystems von selbst 
geodätisch parallel, d. h. äquidistant. Unsere Gleich-
gewichtsaufgabe kann man daher so formulieren: 

Welche geschlossenen Flächen lassen sich singulari-
tätenfrei durch ein System geodätischer Linien über-
decken? 

Dies ist eine Frage des Zusammenhanges im Gro-
ßen, die analytisch nur in einfachen Fällen über-
schaubar ist. Als ein Beispiel dafür legt die Unter-
suchung des Kreistorus durch Kippenhahn5 die Ro-
tationstorusflächen nahe (vgl. auch Jörgens 1 2 ) . Für 
diese gilt der Satz 13 der Differentialgeometrie: 

Längs jeder geodätischen Linie ist das Produkt 
R • sin a aus dem Radius des Parallelkreises und dem 
Sinus des Winkels, den die Geodätische mit dem Me-
ridian einschließt, konstant. 

Jedes Feldliniensystem 

R • sin a = R0 • sin a0 (61) 

ergibt also eine Gleichgewichtsanordnung auf der 
Rotationsfläche, und der größte Winkel, den über-
haupt eine Feldlinie am äußeren Rand mit dem Me-
ridian bilden kann, ist durch das Verhältnis 

sin C4 = RJRX < 1 (62 ) 

des kleinsten zum größten Radius bestimmt. Entspre-
chend hat der Strom außen stets eine azimutale Kom-
ponente, und es gibt keine Gleichgewichtsanordnung 
eines Rotationstorus ohne azimutalen Gesamtstrom. 

Zur allgemeinen Behandlung der Uberdeckungs-
frage untersuchen wir den Zusammenhang zwischen 
zwei verschiedenen Gleichgewichtsflächen. Durch die 
gleichen Parameterwerte v sind die Feldlinien der 
einen denen der anderen zugeordnet, das gleiche ge-
schieht durch u für die Strombahnen. Sehen wir von 
den Verformungen ab, welche die Maßbeziehungen 
(59 ) nicht ändern, so ist der einzige Unterschied 
zwischen beiden Flächen der, daß die Feldlinien an 
den entsprechenden Stellen verschiedenen Abstand 
1/G h a b e n u . Durch Verändern dieses Feldlinien-
abstandes kann man also die eine Fläche aus der 

12 K . JÖRGENS, Z . Naturforschg. 13 a, 493 [1958 ] . 
13 z . B . W . HAAK, Differential-Geometrie, Teil I, Wolfenbüt-

teler Verlagsanstalt, Wolfenbüttel u. Hannover 1949, S. 105. 

anderen erhalten. Insbesondere kann man so alle 
Gleichgewichtsflächen aus der Ebene 

ds2 = du2 -f- du2 ( 63 ) 

bekommen. Diesen Zusammenhang kann man zur 
Herstellung einer Modellfläche benutzen. Dazu hat 
man nur ein System geodätischer Streifen derartig 
zu verbinden, daß ihr gegenseitiger Abstand variabel 
ist. Ein solches Modell läßt sich aus Papier einfach 
herstellen. 

Die Magnetfeldlinien sind als geodätische Linien 
mit ihrer Tangentenfläche in die Ebene abwickelbar. 
Daher kann man zu ihrer Darstellung ein System 
von Papierstreifen nehmen. Die Strombahnen sollen 
dieses System senkrecht durchschneiden, müssen aber 
variierbare Länge besitzen. Man kann sie durch eine 
Folge von Papierstegen darstellen, wenn man diese 
Stege zwischen den Feldlinienstreifen ziehharmonika-
artig faltet. Dann bekommt man ein Papiergitter der 
in Abb. 8 gezeigten Gestalt. In ihm stellen die durch-

j * 

A b b . 8. Model lgewebe . 

laufenden Streifen die magnetischen Feldlinien dar. 
Die Strombahnen sind die Projektionen der gefalte-
ten Stege in die von den Streifen gebildete mittlere 
Fläche. 

Um mit einem solchen Modellpapier geschlossene 
Gleichgewichtsflächen nachzubilden, hat man es so 
zusammenzufügen, daß Strombahnen und Feldlinien 
keine freien Enden mehr aufweisen. Ist das gelun-
gen, so hat man das Überdeckungsproblem im Gro-
ßen gelöst und eine mögliche Gleichgewichtskonfigu-
ration nachgeahmt. 

Wir wollen noch die Herstellung von Torusmodel-
len beschreiben. Um den in dieser Arbeit behandel-
ten Fall einer Anordnung ohne azimutalen Gesamt-
strom zu erhalten, geht man von einem rechteckigen 
Papiergitter aus und klebt es zunächst zylindrisch 

14 j / G dv ist der Abstand zwischen den Feldlinien v und 
v + dv . 



so zusammen, daß die Strombahnen geschlossen sind. 
Durch ringförmiges Zusammenbiegen des Zylinders 
und Aneinanderfügen der freien Enden der Feld-
linien entsteht daraus die gewünschte Konfiguration. 
Einen so hergestellten Papiertorus 15 von ca. 50 cm 
Durchmesser zeigt die Abb. 9. Bei diesem Torus lau-
fen die Feldlinien ebenfalls in sich zurück. Wir haben 

ihm die Gestalt n = 8 mit 8 Maxima des Querschnit-
tes gegeben. Er ist praktisch das räumliche Modell 
zu dem früher gerechneten Querschnitt für n = 8 
(Abb . 5 c ) . Man sieht gut die Wulstung der inneren 
Feldlinien, die sich daraus ergibt, daß die äußeren 
und inneren Feldlinien gleich lang sind. 

Torusanordnungen, wie den früher 3 untersuchten 
Kreistorus mit rein azimutalem Strom, erhält man, 
wenn man in umgekehrter Reihenfolge zuerst die 
Feldlinien in sich schließt und dann diesen Zylinder 
ringförmig zum Torus biegt. Entsprechend ergeben 
sich Anordnungen der in früheren A r b e i t e n 5 ' 1 2 

und in unserem Beispiel der Rotationsfläche behan-
delten Art, wenn man zunächst die Strombahnen ver-
setzt aneinanderfügt. Der aus einem solchen Zylinder 
zusammengebogene Torus wird dann von den Strom-
linien spiralartig umlaufen. 

Durch die überraschende Verformbarkeit solcher 
Papierflächen erhält man einen Eindruck von der 
Mannigfaltigkeit möglicher Gleichgewichtsflächen. 

Zum Abschluß sei eine Bemerkung über das Ma-
gnetfeld im Außenraum angefügt. Die auf der Gleich-
gewichtsfläche vorgegebenen Magnetfelder lassen sich 
im allgemeinen nur bis zu einem gewissen endlichen 
Abstand von der Fläche singularitätenfrei fortsetzen. 
Innerhalb dieses Abstandes müssen bei einer wirk-
lichen Anordnung die das Feld erzeugenden Spulen 
angebracht werden. J ö r g e n s 12 hat die Größe dieses 
Abstandes bei den axialsymmetrischen Anordnungen 
untersucht und ihn für elliptische Querschnitte expli-
zit angegeben. Falls keine besonderen Symmetrien 
vorliegen, darf man erwarten, daß dieser Abstand 
von der Größenordnung der Krümmungsradien un-
serer Gleichgewichtsoberfläche ist. 

15 Wir möchten besonders Herrn W. STODIEK für die Mithilfe 
bei seiner Herstellung danken. 

Abb. 9. Räumliches Torusmodell für n = 8. 


